Interaction Manifolds for Reaction Diffusion Equations in Two Dimensions

نویسنده

  • J. Douglas Wright
چکیده

We consider a general planar reaction diffusion equation which we hypothesize has a localized traveling wave solution. Under assumptions which are no stronger than those needed to prove the stability of a single pulse, we prove that the PDE has solutions which are roughly the linear superposition of two pulses, so long as they move along trajectories which are not parallel. In particular, we prove that if the initial data for the equation is close to the sum of two separated pulses, then the solution converges exponentially fast to such a superposition so long as the distance between the two pulses remains sufficiently large.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon

This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...

متن کامل

On the Hyperbolicity Properties of Inertial Manifolds of Reaction–Diffusion Equations

For 3D reaction–diffusion equations, we study the problem of existence or nonexistence of an inertial manifold that is normally hyperbolic or absolutely normally hyperbolic. We present a system of two coupled equations with a cubic nonlinearity which does not admit a normally hyperbolic inertial manifold. An example separating the classes of such equations admitting an inertial manifold and a n...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

On Precise Center Stable Manifold Theorems for Certain Reaction-diffusion and Klein-gordon Equations

We consider positive, radial and exponentially decaying steady state solutions of the general reaction-diffusion and Klein-Gordon type equations and present an explicit construction of infinite-dimensional invariant manifolds in the vicinity of these solutions. The result is a precise stable manifold theorem for the reaction-diffusion equation and a precise center-stable manifold theorem for th...

متن کامل

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010